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Abstract
In this paper, the path integral technique is applied to the quantum motion on
the Hermitian hyperbolic space HH(2). The Schrödinger equation on this space
separates in 12 coordinate systems which are closely related to the coordinate
systems on the two-dimensional hyperboloid. For six coordinate systems out
of the twelve it is possible to find a path integral solution.

PACS number: 31.15.Kb

1. Introduction

In the present paper, the path integral method [7, 21, 32, 42] is applied to the Hermitian
hyperbolic space HH(2). This work is the continuation of the programme to apply the path
integral formalism to as many as possible quantum systems. In recent publications, we have
achieved path integral solutions of two- and three-dimensional flat space R

2 and R
3, on the two-

and three-dimensional sphere S(2) and S(2), and the two- and three-dimensional hyperboloid
�(2) and �(3) [14, 15]. Also some other specific cases were considered, such as imaginary
Lobachevsky space [13] or hyperbolic spaces of rank 1 [11]. Whereas in some of these
manifolds just spherical coordinates, or coordinates related to them, were used to evaluate the
path integral, a systematic study was performed for spaces in two and three dimensions with
constant (zero, positive or negative) curvature, i.e., Cartesian space, spheres and hyperboloids.
As a general observation, it was possible to solve the path integral explicitly in coordinate
systems which were non-parametric, e.g. spherical or parabolic coordinates. Parametric
coordinate systems were more difficult to handle. Important examples of the solution of the
path integral in a parametric coordinate system are elliptic and spheroidal coordinates in flat
space [15, 21] and on spheres [16]. In these cases a theory of special functions, the elliptic
and spheroidal functions, exists [36]. Some of these results could be applied by a heuristic
analytic continuation to the three-dimensional hyperboloid. These results were summarized in
the monography [15]. In our ‘Handbook of Feynman Path Integrals’ [21] we collected as best
to our knowledge all known solutions for the Feynman path integral in quantum mechanics.
Here also many references were collected and we rely on this in what follows, if a known path
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integral solution, say for a potential problem, must be applied in a subsequent path integration
in a particular coordinate system in a hyperbolic space.

It is worth noting that the basic path integrals, by which we mean the path integral
solution of the (radial) harmonic oscillator, the (modified) Pöschl–Teller potential and the
spheroidal path integral, respectively, were found by means of a group-space path integration.
Of particular importance are the two cases of the Pöschl–Teller potential [1, 6, 8, 33] (SU(2)-
group path integration) and the modified Pöschl–Teller potential [1, 8, 33] (SU(1, 1)-group
path integration). This has now been generally established in the literature, and will not be
repeated here in much detail.

In the last few years, many textbooks have been published which were devoted to the
application of the path integral method in various branches of mathematical physics, e.g. by
Haba [22], Johnson and Lapidus [25], Kolokoltsov [34], and many others as has been listed
in our publication [21]. Two further important publications are due to Inomata, Kuratsuji
and Gerry [24], and Tomé [43], where path integrals and coherent states based on SU(2) and
SU(1, 1) were discussed, together with applications to potential problems.

Let us briefly discuss the physical significance of the consideration of separation of
variables in coordinate systems. The free motion in some space is, of course, the most
symmetric one, and the search for the number of coordinate systems which allow the separation
of the Hamiltonian is equivalent to the investigation how many inequivalent sets of variables
can be found. The incorporation of potentials usually removes at least some of the symmetry
properties of the space. Well-known examples are spherical systems, and they are most
conveniently studied in spherical coordinates. For instance, the isotropic harmonic oscillator
in three dimensions is separable in eight coordinate systems, namely in Cartesian, spherical,
circular polar, circular elliptic, conical, oblate spheroidal, prolate spheroidal and ellipsoidal
coordinates. The Coulomb potential is separable in four coordinate systems, namely in conical,
spherical parabolic and prolate spheroidal II coordinates.

The separation of a particular quantum mechanical potential problem into more than one
coordinate system has the consequence that there are additional integrals of motion and that
the spectrum is degenerate. The Noether theorem connects the particular symmetries of a
Lagrangian, i.e., the invariances with respect to the dynamical symmetries, with conservation
laws in classical mechanics and with observables in quantum mechanics, respectively. In the
case of the isotropic harmonic oscillator one has in addition to the conservation of energy and
the conservation of the angular momentum, the conservation of the quadrupole moment; in
the case of the Coulomb problem one has in addition to the conservation of energy and the
angular momentum, the conservation of the Pauli–Runge–Lenz vector. In total, the additional
conserved quantities in these two examples add up to five functionally independent integrals
of motion in classical mechanics, respectively observables in quantum mechanics.

Disturbing the symmetry usually spoils it. This can be achieved by adding terms into
the Hamiltonian which are non-symmetric. Maximally super-integrable systems turn into
minimally superintegrable systems, into just integrable or non-integrable systems. The
integrable systems may not be explicitly solvable but may remain separable. A well-known
example is the two-Coulomb centre problem which is separable in spheroidal coordinates, but
is not explicitly solvable in terms of known higher-transcendental functions.

Another motivation for studying a system in terms of separation in different coordinate
systems is the property of coordinate systems that they represent different physical set-ups in
scattering theory, e.g. Wehrhahn et al [47].

The comprehensive results of the evaluation of the path integral in spaces of two and
three dimensions were possible because the number and form of the coordinate systems which
allow separation of variables in the Helmholtz, respectively the Schrödinger equation, and
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therefore also for the path integral, are known. For the cases of flat (real or complex) spaces,
spheres and hyperboloids this has been known for a long time, e.g. [31, 37–39]. However, for
other spaces this is in general not the case. A method of how to construct and find coordinate
systems on homogeneous spaces is known and has been applied for Minkowski spaces [26]
and higher-dimensional hyperbolic spaces [27]. Some of the corresponding path integrals
evaluations were presented in [15]. A particular feature of the path integral solution (i.e. the
integral kernel of the time-evolution operator) on spheres, flat space and hyperboloids was
that the corresponding Green’s function (i.e. the integral kernel of the resolvent operator)
could be expressed in closed form: in flat space one obtains for the principal term a K-Bessel
function (which in odd dimensions can be simplified to an exponential times a power-term),
on spheres one obtains a Legendre-function P µ

ν (x) of the first kind (which in odd dimensions
can be simplified to powers of trigonometric functions) and on hyperboloids one obtains a
Legendre-function Qµ

ν (z) of the second kind. In all these cases the Green’s function depends
only on the invariant distance d in the space in question. In flat space, this is the Euclidean
distance d = d(|x−y|) (x, y ∈ R

D), on the sphere it is the angle ψ({ϑ}) ({ϑ} spherical angles)
and on hyperboloids it is the hyperbolic distance d(u′′, u′) (u element of the hyperboloid). In
more general cases of hyperbolic spaces, group theoretic tools can be used to derive integral
representations [46].

The Hermitian hyperbolic space HH(n) is defined by SU(n, 1)/S[U(1) × U(n)] (see
e.g. Helgason [23] or Venkov [45]). SU(n, 1) is the isometry group of HH(n) that leaves
the Hermitian form invariant, and S[U(1) × U(n)] = SU(n, 1)[U(1) × U(n)] is an isotropy
subgroup of the isometry group. For HH(2), Boyer et al [2] found 12 coordinate systems
which allow separation of variables in the Helmholtz, respectively the Schrödinger equation,
and the path integral. In [2], for example, mutually non-conjugate maximal Abelian subgroups
of SU(2, 1) are used to construct separable coordinate systems. The special feature of the
isotropy group is that it has four mutually non-conjugate maximal Abelian subgroups, which
give rise to the fact that each of the separable coordinate systems has exactly two so-called
ignorable coordinates [3]. Ignorable coordinates do not appear in the metric tensor explicitly,
and in the corresponding quantum Hamiltonian they just give two-fold partial differentials,
therefore giving simple plane waves or circular waves as solutions of the Hamiltonian. The
remaining two coordinates can be classified by means of the nine coordinate systems on the
two-dimensional hyperboloid. Combining properly the sub-algebras yields 12 coordinate
systems on HH(2) [2]. This will not be repeated here.

The present system is of interest due to the structure of the metric which has the form
(−, +, . . . , +), i.e. it is of the Minkowski-type, and the Hamiltonian system under consideration
is integrable and relativistic with non-trivial interaction after integrating out the ignorable
variables [2]. This feature of constructing interaction, respectively potential forces, is also
known from examples of quantum motion on other group spaces [1, 6, 8, 33].

I do not want to go into the details of the construction of the Hermitian hyperbolic space
HH(n) in general and for HH(2) in particular. Detailed information can be found in [2]. The
Hamiltonian for HH(2) has the form

H = 4

2m
(1 − |z1|2 − |z2|2)

[
(|z1|2 − 1)

∣∣pz1

∣∣2 + (|z2|2 − 1)
∣∣pz2

∣∣2 + z1z̄2pz1 p̄z2 + z̄1z2p̄z1pz2

]
(1.1)

and this information will be sufficient for our purposes.
In the following we present the 12 coordinate systems. As we will see, in six out of the

twelve systems we can explicitly evaluate the path integral. We cannot find a path integral
solution of the three parametric systems and the three parabolic systems. We find path integral
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solutions for the spherical, the three equidistant and the two horicyclic coordinate systems.
After the statement of the coordinate systems, the Hamiltonian is given (following [2]) and
then the metric tensor is extracted. Of course, well-known path integral solutions come
into play. The ignorable coordinates can be separated off in the path integrals by a two-
dimensional Gaussian path integration. For the convenience of the reader, I briefly sketch the
path integral definition which is used in this paper. An exact lattice definition of a path integral
in a curved space is important, because different lattice definitions and their corresponding
different ordering prescriptions in the quantum Hamiltonian must not be mixed up. In the
conclusions, the results are summarized and discussed.

2. The path integral solutions: the spherical coordinate system

The spherical coordinate system on HH(2) is given by

z1 = tanh ω cos β eiϕ1

z2 = tanh ω sin β eiϕ2

} (
ω > 0, β ∈

(
0,

π

2

)
, ϕ1, ϕ2 ∈ [0, 2π)

)
. (2.1)

This gives for the Hamiltonian

H
(
ω,pω, β, pβ, pϕ1 , pϕ2

) = 1

2m

[
p2

ω +
1

sinh2 ω

(
p2

β +
p2

ϕ1

cos2 β
+

p2
ϕ2

sin2 β

)
+

(
pϕ1 + pϕ2

)2

cosh2 ω

]
(2.2)

= 1

2m

[
p2

ω +
p2

β

sinh2 ω
+ A(ω, β)p2

ϕ1
+ B(ω, β)p2

ϕ2
+

2pϕ1pϕ2

cosh2 ω

]
,

(2.3)

with the quantities A(ω, β) and B(ω, β) given by

A(ω, β) = 1

sinh2 ω cos2 β
− 1

cosh2 ω
, B(ω, β) = 1

sinh2 ω sin2 β
− 1

cosh2 ω
. (2.4)

Therefore we obtain for the (inverse) metric tensor (gab):

(gab) =


1 0 0 0
0 1

sinh2 ω
0 0

0 0 A(ω, β) − 1
cosh2 ω

0 0 − 1
cosh2 ω

B(ω, β)

 (2.5)

which gives
√

g =
√

det(gab) = sinh3 ω cosh ω sin β cos β. (2.6)

Let us abbreviate

(ĝab) =
(

A(ω, β) − 1
cosh2 ω

− 1
cosh2 ω

B(ω, β)

)
, (2.7)

then it follows that

(ĝab)=
(

sinh2 ω cos2 β(cosh2 ω − sinh2 ω sin2 β) sinh4 ω sin2 β cos2 β

sinh4 ω sin2 β cos2 β sinh2 ω sin2 β(cosh2 ω − sinh2 ω cos2 β)

)
.

(2.8)
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Therefore we can write the Lagrangian in the following form:

L = m

2

{
ω̇2 + sinh2 ωβ̇2 + sinh2 ω

[
cosh2 ω

(
cos2 βϕ̇2

1 + sin2 βϕ̇2
2

)
− sinh2 ω sin2 β cos2 β(ϕ̇1 − ϕ̇2)

2
]}

(2.9)

= m

2

[
ω̇2 + sinh2 ωβ̇2 + (ϕ̇1, ϕ̇2)(ĝab)

(
ϕ̇1

ϕ̇2

)]
. (2.10)

From these ingredients we find for the momentum operators

pω = h̄

i

(
∂

∂ω
+

3

2
coth ω +

1

2
tanh ω

)
, (2.11)

pβ = h̄

i

(
∂

∂β
+

1

2
(cot β − tan β)

)
, (2.12)

pϕ1 = h̄

i

∂

∂ϕ1
, pϕ2 = h̄

i

∂

∂ϕ2
. (2.13)

The quantum potential according to our ordering prescription is found to read


V (ω, β) = − h̄2

8m

[(
1

sinh2 ω
− 1

cosh2 ω
− 16

)
+

1

sinh2 ω

(
1

sin2 β
+

1

cos2 β

)]
. (2.14)

Starting from equation (2.2), we have extracted the corresponding metric tensor, therefore got
also its inverse and found the corresponding Lagrangian. In the path integral formalism this
procedure corresponds from starting with the Hamiltonian path integral, and by integrating
out the (Gaussian) momentum-path-integrations obtaining the Lagrangian path integral. This
is always possible provided the Hamiltonian, respectively the Lagrangian, are not singular. It
is in effect also the canonical method to construct the path Lagrangian integral by starting with
a proper Hamiltonian operator and its corresponding classical Hamiltonian function. In this
correspondence, we have to take into account a proper ordering prescription of momentum and
position operators in the Hamiltonian operator. However, this is a well-defined prescription
which has been extensively worked out in [21], where also a detailed overview of several
ordering prescriptions and their differences, advantages and disadvantages was given.

We have all the ingredients to our disposal to set up the path integral in spherical
coordinates on HH(2). We obtain

K(ω′′, ω′, β ′′, β ′, ϕ′′
1 , ϕ′

1, ϕ
′′
2 , ϕ′

2; T )

=
∫ ω(t ′′)=ω′′

ω(t ′)=ω′
Dω(t)

∫ β(t ′′)=β ′′

β(t ′)=β ′
Dβ(t)

∫ ϕ1(t
′′)=ϕ′′

1

ϕ1(t ′)=ϕ′
1

Dϕ1(t)

×
∫ ϕ2(t

′′)=ϕ′′
2

ϕ2(t ′)=ϕ′
2

Dϕ2(t) sinh3 ω cosh ω sin β cos β

× exp

(
i

h̄

∫ T

0

{
m

2

[
ω̇2 + sinh2 ωβ̇2 + (ϕ̇1, ϕ̇2)(ĝab)

(
ϕ̇1

ϕ̇2

)]
+

h̄2

8m

[(
1

sinh2 ω
− 1

cosh2 ω
− 16

)
+

1

sinh2 ω

(
1

sin2 β
+

1

cos2 β

)]})
.

(2.15)
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This path integral is evaluated in the first step by means of a Fourier expansion according to

Kk1k2(ω
′′, ω′, β ′′, β ′; T ) =

∫
dϕ1 dϕ2 e−i(k1ϕ1+k2ϕ2)K(ω′′, ω′, β ′′, β ′, ϕ′′

1 , ϕ′
1, ϕ

′′
2 , ϕ′

2; T )

(2.16)

K(ω′′, ω′, β ′′, β ′, ϕ′′
1 , ϕ′

1, ϕ
′′
2 , ϕ′

2; T ) =
∑

k1,k2∈Z
2

eik1(ϕ
′′
1 −ϕ′

1)

2π

eik2(ϕ
′′
2 −ϕ′

2)

2π
Kk1k2(ω

′′, ω′, β ′′, β ′; T ).

(2.17)

We make use of the general Gaussian integral (in D dimensions)∫
dp eiq̇·p− 1

2 gabpapb = (2π)D/2
√

det(gab) e− 1
2 gabq̇

a q̇b

. (2.18)

We see that we can separate the (ϕ1, ϕ2)-coordinates in the Lagrangian path integral. The
corresponding quantum numbers (k1, k2) yield via (2.18), respectively with gab replaced by
gab, potential terms reflecting the corresponding terms in the Hamiltonian H (2.2) where the
momenta

(
pϕ1 , pϕ2

)
are replaced by (−ih̄k1,−ih̄k2). We obtain (by displaying explicitly the

lattice definition in (ϕ1, ϕ2))

Kk1k2(ω
′′, ω′, β ′′, β ′; T ) =

∫ ω(t ′′)=ω′′

ω(t ′)=ω′
Dω(t)

∫ β(t ′′)=β ′′

β(t ′)=β ′
Dβ(t)

√
g

× exp

{
i

h̄

∫ T

0

[
m

2
(ω̇2 + sinh2 ωβ̇2) − 
V (ω, β)

]
dt

} N∏
j=1

m

2π iεh̄∫
dϕ1,j

∫
dϕ2,j exp

(
− m

2iεh̄
(
ϕ1,j , 
ϕ2,j )(ĝab(ωj , βj )

(

ϕ1,j


ϕ2,j

)
− ik1
ϕ1,j − ik2
ϕ2,j

)
︸ ︷︷ ︸

= 2π iεh̄

m

√
det(ĝab) exp

[
− iεh̄

2m
(k1, k2)(ĝ

ab)

(
k1

k2

)]
= (sinh2 ω′′ sinh2 ω′ cosh ω′′ cosh ω′ sin β ′′ sin β ′ cos β ′′ cos β ′)−1/2 e−2ih̄T /m

×
∫ ω(t ′′)=ω′′

ω(t ′)=ω′
Dω(t)

∫ β(t ′′)=β ′′

β(t ′)=β ′
Dβ(t) sinh ω exp

{
i

h̄

∫ T

0

[
m

2
(ω̇2 + sinh2 ωβ̇2)

− h̄2

2m sinh2 ω

(
k2

1 − 1
4

cos2 β
+

k2
2 − 1

4

sin2 β
− 1

4

)
+

h̄2

2m

(k1 + k2)
2 − 1

4

cosh2 ω

]
dt

}
. (2.19)

The above path integral is first in the variable β a path integral for the Pöschl–Teller potential
with a discrete spectrum and quantum number n, and second in the variable ω a path integral
for the modified Pöschl–Teller potential with a continuous spectrum and the quantum number
p. Therefore we can write the complete solution as follows:

K(ω′′, ω′, β ′′, β ′, ϕ′′
1 , ϕ′

1, ϕ
′′
2 , ϕ′

2; T )

=
∑
k1∈Z

∑
k2∈Z

∑
n∈N

∫ ∞

0
dp �p,n,k1k2(ω

′′, β ′′, ϕ′′
1 , ϕ′′

2 )�∗
p,n,k1k2

(ω′, β ′, ϕ′
1, ϕ

′
2) e−iEpT/h̄,

(2.20)

with the wavefunctions and the energy-spectrum given by

�p,n,k1k2(ω, β, ϕ1, ϕ2)=
(

1

4
sinh 2ω sin 2β

)−1/2 ei(k1ϕ1+k2ϕ2)

2π

(k1,k2)

n (β)�(k1+k2+2n−1,k1+k2)
p (ω),

(2.21)
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Ep = h̄2

2m
(p2 + 4). (2.22)

The 
(k1,k2)
n (β) are the Pöschl–Teller functions, which are given by [1, 6, 8, 33]

V (x)= h̄2

2m

(
α2 − 1

4

sin2 x
+

β2 − 1
4

cos2 x

)

(α,β)

n (x) (2.23)

=
[

2(α + β + 2l + 1)
l!� (α + β + l + 1)

� (α + l + 1)� (β + l + 1)

]1/2

(sin x)α+1/2(cos x)β+1/2P (α,β)
n (cos 2x).

(2.24)

The P
(α,β)
n (z) are Gegenbauer polynomials. The �

(µ,ν)
p (ω) are the modified Pöschl–Teller

functions, which are given by [1, 6, 8, 33]

�(η,ν)
n (r) = N(η,ν)

n (sinh r)2k2− 1
2 (cosh r)−2k1+ 3

2

× 2F1(−k1 + k2 + κ,−k1 + k2 − κ + 1; 2k2;− sinh2 r) (2.25)

N(η,ν)
n = 1

� (2k2)

[
2(2κ − 1)� (k1 + k2 − κ)� (k1 + k2 + κ − 1)

� (k1 − k2 + κ)� (k1 − k2 − κ + 1)

]1/2

. (2.26)

The scattering states are given by

V (r) = h̄2

2m

(
η2 − 1

4

sinh2 r
− ν2 − 1

4

cosh2 r

)
�(η,ν)

p (r) = N(η,ν)
p (cosh r)2k1− 1

2 (sinh r)2k2− 1
2 2F1(k1 + k2 − κ, k1 + k2 + κ − 1; 2k2;− sinh2 r)

(2.27)

N(η,ν)
p = 1

� (2k2)

√
p sinh πp

2π2
[� (k1 + k2 − κ)� (−k1 + k2 + κ)

×� (k1 + k2 + κ − 1)� (−k1 + k2 − κ + 1)]1/2, (2.28)

k1, k2 defined by: k1 = 1
2 (1 ± ν), k2 = 1

2 (1 ± η), where the correct sign depends on the
boundary conditions for r → 0 and r → ∞, respectively. The number NM denotes the
maximal number of states with 0, 1, . . . , NM < k1 − k2 − 1

2 . κ = k1 − k2 − n for the bound
states and κ = 1

2 (1+ip) for the scattering states. 2F1(a, b; c; z) is the hypergeometric function
[9, p 1057].

Note the zero-energy E0 = 2h̄2/m which is a characteristic feature for the quantum
motion on an hyperbolic space [20]. It has also been observed in [46] in terms of spherical
coordinates, where the wavefunctions and the spectrum were found by solving the Schrödinger
equation.

3. The equidistant coordinate systems

3.1. Equidistant-I coordinates

The first set of equidistant coordinates on HH(2) is given by

z1 = tanh τ1 eiϕ1

z2 = tanh τ1
cosh τ2

eiϕ2

 (τ1, τ2 > 0, ϕ1, ϕ2 ∈ [0, 2π)). (3.1)
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This gives for the Hamiltonian

H = 1

2m

[
p2

τ1
+

1

cosh2 τ1

(
p2

τ2
+

p2
ϕ1

sinh2 τ2
− (pϕ1 + pϕ2)

2

cosh2 τ2

)
+

p2
ϕ2

sinh2 τ1

]
(3.2)

= 1

2m

[
p2

τ1
+

p2
τ2

cosh2 τ1
+

p2
ϕ1

cosh2 τ1 sinh2 τ2 cosh2 τ2

+

(
1

sinh2 τ1
− 1

cosh2 τ1 cosh2 τ2

)
p2

ϕ2
− 2pϕ1pϕ2

cosh2 τ1 cosh2 τ2

]
, (3.3)

and we obtain for the metric terms

(gab) =


1 0 0 0
0 1

sinh2 τ1
0 0

0 0 1
cosh2 τ1 sinh2 τ2 cosh2 τ2

− 1
cosh2 τ1 cosh2 τ2

0 0 − 1
cosh2 τ1 cosh2 τ2

1
sinh2 τ1

− 1
cosh2 τ1 cosh2 τ2

 , (3.4)

det(gab) = sinh2 τ1 cosh6 τ1 sinh2 τ2 cosh2 τ2. (3.5)

Similarly as for the spherical system we introduce

(ĝab) =
( 1

cosh2 τ1 sinh2 τ2 cosh2 τ2
− 1

cosh2 τ1 cosh2 τ2

− 1
cosh2 τ1 cosh2 τ2

1
sinh2 τ1

− 1
cosh2 τ1 cosh2 τ2

)
, (3.6)

and its inverse (ĝab)

(ĝab) = sinh2 τ1 cosh2 τ1 sinh2 τ2

coth2 τ1 cosh2 τ2 − 1 1

1
1

sinh2 τ2

 . (3.7)

From these ingredients we find for the momentum operators

pτ1 = h̄

i

(
∂

∂τ1
+

3

2
coth τ1 +

1

2
tanh τ1

)
, (3.8)

pτ2 = h̄

i

(
∂

∂τ2
+

1

2
(coth τ2 + tanh τ2)

)
, (3.9)

pϕ1 = h̄

i

∂

∂ϕ1
, pϕ2 = h̄

i

∂

∂ϕ2
(3.10)

and the quantum potential according to our ordering prescription is found to read


V (τ1, τ2) = − h̄2

8m

[(
1

sinh2 τ1
− 1

cosh2 τ1
− 16

)
+

1

cosh2 τ1

(
1

sinh2 τ2
+

1

cosh2 τ2

)]
.

(3.11)

From our line of reasoning of the spherical system, it is obvious that we can repeat the method
to integrate out the ignorable coordinates (ϕ1, ϕ2) by means of Gaussian integrations. We find
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K(τ ′′
1 , τ ′

1, τ
′′
2 , τ ′

2, ϕ
′′
1 , ϕ′

1, ϕ
′′
2 , ϕ′

2; T ) =
∫ τ1(t

′′)=τ ′′
1

τ1(t ′)=τ ′
1

Dτ1(t)

∫ τ2(t
′′)=τ ′′

2

τ2(t ′)=τ ′
2

Dτ2(t)

∫ ϕ1(t
′′)=ϕ′′

1

ϕ1(t ′)=ϕ′
1

Dϕ1(t)

×
∫ ϕ2(t

′′)=ϕ′′
2

ϕ2(t ′)=ϕ′
2

Dϕ2(t) sinh τ1 cosh3 τ1 sinh τ2 cosh τ2

× exp

(
i

h̄

∫ T

0

{
m

2

[
τ̇ 2

1 + cosh2 τ1τ̇
2
2 + (ϕ̇1, ϕ̇2)(ĝab)

(
ϕ̇1

ϕ̇2

)]
+

h̄2

8m

[
1

sinh2 τ1
− 1

cosh2 τ1
− 16 +

1

cosh2 τ1

(
1

sinh2 τ2
+

1

cosh2 τ2

)]}
dt

)
=

(
1

16
sinh 2τ ′′

1 sinh 2τ ′
1 sinh 2τ ′′

2 sinh 2τ ′
2

)−1/2

e−2ih̄T /m

×
∑

k1,k2∈Z
2

eik1(ϕ
′′
1 −ϕ′

1)+ik2(ϕ
′′
2 −ϕ′

2)

(2π)2
Kk1k2(τ

′′
1 , τ ′

1, τ
′′
2 , τ ′

2; T ) (3.12)

with the remaining path integral Kk1k2(T ) given by

Kk1k2(τ
′′
1 , τ ′

1, τ
′′
2 , τ ′

2; T ) = (cosh τ ′′
1 cosh τ ′

1)
−1/2

∫ τ1(t
′′)=τ ′′

1

τ1(t ′)=τ ′
1

Dτ1(t)

∫ τ2(t
′′)=τ ′′

2

τ2(t ′)=τ ′
2

Dτ2(t) cosh τ1

× exp

(
i

h̄

∫ T

0

{
m

2

(
τ̇ 2

1 + cosh2 τ1τ̇
2
2

)
− h̄2

2m

[
k2

2 − 1
4

sinh2 τ1
+

1

cosh2 τ1

(
k2

1 − 1
4

sinh2 τ2
− (k1 + k2)

2 − 1
4

cosh2 τ2
+

1

4

)]}
dt

)
.

(3.13)

The path integration in τ1 and τ2 consists of two successive path integrations corresponding
to two modified Pöschl–Teller potentials. In the τ2-path integration bound and continuous
states are possible, which give rise to two expressions in the variable τ1 (we set nτ2 =
(|k1 + k2| − |k1| − 2n − 1)):

Vk2,nτ2
(τ1) = h̄2

2m

(
k2

2 − 1
4

sinh2 τ1
− n2

τ2
− 1

4

cosh2 τ1

)
, (3.14)

Vk2,kτ2
(τ1) = h̄2

2m

(
k2

2 − 1
4

sinh2 τ1
− −k2

τ2
− 1

4

cosh2 τ1

)
. (3.15)

Note that due to the potential trough in the variable τ2 there exist a number of bound states,
labelled by nτ2 with nτ2 = 0, . . . ,Mmax, where Mmax <

[ |k2|−1
2

]
([x] denotes the integer part

of x). Because the maximum number of states in the τ2-system is limited by |k2|/2, there does
not exist any bound states in the τ1-system. In the usual notation of the modified Pöschl–Teller
functions, we find the final solution in equidistant-I coordinates

K(τ ′′
1 , τ ′

1, τ
′′
2 , τ ′

2, ϕ
′′
1 , ϕ′

1, ϕ
′′
2 , ϕ′

2; T )

=
∑
k1∈Z

∑
k2∈Z

∫ ∞

0
dkτ2

∫ ∞

0
dp �p,kτ2 ,k1,k2(τ

′′
1 , τ ′′

2 , ϕ′′
1 , ϕ′′

2 )�∗
p,kτ2 ,k1,k2

(τ ′
1, τ

′
2, ϕ

′
1, ϕ

′
2) e−iEpT/h̄

+
∑
k1∈Z

∑
k2∈Z

∑
nτ2 =0,...,Mmax

∫ ∞

0
dp �p,nτ2 ,k1,k2(τ

′′
1 , τ ′′

2 , ϕ′′
1 , ϕ′′

2 )�∗
p,nτ2 ,k1,k2

(τ ′
1, τ

′
2, ϕ

′
1, ϕ

′
2) e−iEpT/h̄,

(3.16)
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with the wavefunctions and the energy-spectrum given by

�p,kτ2 ,k1,k2(τ1, τ2, ϕ1, ϕ2) =
(

1

4
sinh 2τ1 sinh 2τ2

)−1/2 ei(k1ϕ1+k2ϕ2)

2π
�

(k1,k1+k2)
kτ2

(β)�
(k1,ikτ2 )
p (τ1),

(3.17)

�p,nτ2 ,k1,k2(τ1, τ2, ϕ1, ϕ2) =
(

1

4
sinh 2τ1 sinh 2τ2

)−1/2 ei(k1ϕ1+k2ϕ2)

2π
�(k1,k1+k2)

nτ2
(β)�

(k1,nτ2 )
p (τ1),

(3.18)

Ep = h̄2

2m
(p2 + 4). (3.19)

The spectrum is the same as in spherical system, as it should be.

3.2. Equidistant-II coordinates

The second set of equidistant coordinates is given by

z1 = i sinh τ2 cosh u − cosh τ2 sinh u
i cosh τ2 cosh u + sinh τ2 sinh u

z2 = i tanh τ1
i cosh τ2 cosh u + sinh τ2 sinh u

eiϕ

 (τ1 > 0, τ2 ∈ R, u ∈ R, ϕ ∈ [0, 2π)).

(3.20)

This gives for the Hamiltonian

H = 1

2m

[
p2

τ1
+

1

cosh2 τ1

(
p2

τ2
+

p2
u − p2

ϕ

cosh2 2τ2
− 2 sinh 2τ2

cosh2 2τ2
pupϕ

)
+

p2
ϕ

sinh2 τ1

]
(3.21)

= 1

2m

[
p2

τ1
+

p2
τ2

cosh2 τ1
+

p2
u

cosh2 τ1 cosh2 2τ2

+

(
1

sinh2 τ1
− 1

cosh2 τ1 cosh2 2τ2

)
p2

ϕ − 2 sinh 2τ2

cosh2 2τ2
pupϕ

]
, (3.22)

and we obtain for the metric terms

(gab) =


1 0 0 0
0 1

cosh2 τ1
0 0

0 0 1
cosh2 τ1 cosh2 2τ2

− sinh 2τ2

cosh2 τ1 cosh2 2τ2

0 0 − sinh 2τ2

cosh2 τ1 cosh2 2τ2

1
sinh2 τ1

− 1
cosh2 τ1 cosh2 2τ2

 , (3.23)

det(gab) = sinh2 τ1 cosh6 τ1 cosh2 2τ2. (3.24)

Similarly as for the equidistant-I system, the quantum potential according to our ordering
prescription is found to read


V (τ1) = − h̄2

8m

(
1

sinh2 τ1
− 1

cosh2 τ1
− 16

)
, (3.25)

and it does not depend on τ2. We can therefore write the path integral, again we separate off
the ignorable coordinates (u, ϕ), and we obtain
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K(τ ′′
1 , τ ′

1, τ
′′
2 , τ ′

2, u
′′, u′, ϕ′′, ϕ′; T ) =

∫ τ1(t
′′)=τ ′′

1

τ1(t ′)=τ ′
1

Dτ1(t)

∫ τ2(t
′′)=τ ′′

2

τ2(t ′)=τ ′
2

Dτ2(t)

×
∫ u(t ′′)=u′′

u(t ′)=u′
Du(t)

∫ ϕ(t ′′)=ϕ′′

ϕ(t ′)=ϕ′
Dϕ(t) sinh τ1 cosh3 τ1 cosh 2τ2

× exp

[[
i

h̄

∫ T

0

(
m

2

{
τ̇ 2

1 + cosh2 τ1

[
τ̇ 2

2 + (u̇, ϕ̇)(ĝab)

(
u̇

ϕ̇

)]}
− 
V (τ1)

)
dt

]]
=

(
1

4
sinh 2τ ′′

1 sinh 2τ ′
1 cosh 2τ ′′

2 cosh 2τ ′
2

)−1/2

e−2ih̄T /m

×
∑
kϕ∈Z

∫
dku

eiku(u
′′−u′)+ikϕ(ϕ′′−ϕ′)

(2π)2
Kkukϕ

(τ ′′
1 , τ ′

1, τ
′′
2 , τ ′

2; T ) (3.26)

with the path integral Kkukϕ
(T ) given by

Kkukϕ
(τ ′′

1 , τ ′
1, τ

′′
2 , τ ′

2; T ) = (cosh τ ′′
1 cosh τ ′

1)
−1/2

∫ τ1(t
′′)=τ ′′

1

τ1(t ′)=τ ′
1

Dτ1(t)

∫ τ2(t
′′)=τ ′′

2

τ2(t ′)=τ ′
2

Dτ2(t) cosh τ1

× exp

{
i

h̄

∫ T

0

[
m

2

(
τ̇ 2

1 + cosh2 τ1τ̇
2
2

) − h̄2

2m

k2
ϕ − 1

4

sinh2 τ1

− h̄2

2m cosh2 τ1

(
k2
u − k2

ϕ

cosh2 2τ2
− 2 sinh 2τ2

cosh2 2τ2
kukϕ +

1

4

)]
dt

}
. (3.27)

The potential

V (HBP)(τ2) = h̄2

2m cosh2 τ1

(
k2
u − k2

ϕ

cosh2 2τ2
− 2kukϕ

tanh 2τ2

cosh 2τ2

)

= h̄2

2m cosh2 τ1

((
k2
u − k2

ϕ

) − (
k2
u − k2

ϕ

)
tanh2 2τ2 − 2kukϕ

tanh 2τ2

cosh 2τ2

)
≡ h̄2

2m

(
V0 + V1

tanh 2τ2

cosh 2τ2
+ V2 tanh2 2τ2

)
(3.28)

is called the hyperbolic barrier potential [40]. The corresponding path integral can be found
in [12, 21] (and references therein) by means of the coordinate transformation

1 + i sinh 2τ2

2
= cosh2 z. (3.29)

We set

1 + λ ≡
√

V2 − iV1 + 1
4 , λR,I = (�,	)(λ), n = 0, 1, . . . , NM <

[
λR − 1

2

]
.

The discrete wavefunctions have the form

�(HBP)
n (τ2) =

[
(2λR − 2n − 1)n!� (λ − n)

2� (2λR − n)� (n + 1 − λ∗)

]1/2

×
(

1 + i sinh x

2

) 1
2 ( 1

2 −λ) (1 − i sinh x

2

) 1
2 ( 1

2 −λ∗)

P (−λ∗,−λ)
n (i sinh 2τ2), (3.30)

En = − h̄2

2m
n2

τ2
(3.31)



3636 C Grosche

nτ2 = n +
1

2
−

√√√√√1

2

√(
1

4
+ V2

)2

+ V 2
1 +

1

4
+ V2

. (3.32)

The continuous wavefunctions are

�
(HBP)
kτ2

(τ2) = �
(

1
2 − λR − ikτ2

)∣∣
π� (1 − λ∗)

√
kτ2 sinh

(
2πkτ2

)
�

(
1

2
+ i

(
kτ2 − λI

))
�

(
1

2
+ i

(
kτ2 + λI

))
× 2F1

(
1

2
+ i

(
λI − kτ2

)
,

1

2
− λR − ikτ2; 1 − λ∗; i sinh 2τ2 − 1

i sinh 2τ2 + 1

)
, (3.33)

with Ekτ2
= h̄2k2

τ2
2m

. The emerging path integral in the variable τ1 is of almost the same form as
in the case of equidistant-I coordinates; only continuous states are allowed, cf the discussion
after (3.15), and we find for the final solution:

K(τ ′′
1 , τ ′

1, τ
′′
2 , τ ′

2, u
′′, u′, ϕ′′, ϕ′; T )

=
∑
kϕ∈Z

∫
dku

∫ ∞

0
dkτ2

∫ ∞

0
dp �p,kτ2 ,ku,kϕ

(τ ′′
1 , τ ′′

2 , u′′, ϕ′′)�∗
p,kτ2 ,ku,kϕ

(τ ′
1, τ

′
2, u

′, ϕ′) e−iEpT/h̄

+
∑
kϕ∈Z

∫
dku

Mmax∑
nτ2 =0

∫ ∞

0
dp �p,nτ2 ,ku,kϕ

(τ ′′
1 , τ ′′

2 , u′′, ϕ′′)�∗
p,nτ2 ,ku,kϕ

(τ ′
1, τ

′
2, u

′, ϕ′) e−iEpT/h̄,

(3.34)

with the wavefunctions and the energy-spectrum given by

�p,kτ2 ,ku,kϕ
(τ1, τ2, u, ϕ) =

(
1

2
sinh 2τ1 cosh 2τ2

)−1/2 ei(kuu+kϕϕ)

2π
�

(HBP)
kτ2

(τ2)�
(ku,ikτ2 )
p (τ1),

(3.35)

�p,nτ2 ,ku,kϕ
(τ1, τ2, u, ϕ) =

(
1

2
sinh 2τ1 cosh 2τ2

)−1/2 ei(kuu+kϕϕ)

2π
�(HBP)

nτ2
(τ2)�

(ku,nτ2 )
p (τ1),

(3.36)

Ep = h̄2

2m
(p2 + 4). (3.37)

The spectrum is the same as before, as it should be.

3.3. Equidistant-III coordinates

The third set of equidistant coordinates is given by

z1 = sinh τ2 + iu e−τ2

cosh τ2 + iu e−τ2

z2 = tanh τ1
cosh τ2 + iu e−τ2

eiϕ

 (τ1, τ2 > 0, u ∈ R, ϕ ∈ [0, 2π)). (3.38)

This gives for the Hamiltonian

H = 1

2m

[
p2

τ1
+

1

cosh2 τ1

(
p2

τ2
+ (e2τ2pu + pϕ)2 − p2

ϕ

)
+

p2
ϕ

sinh2 τ1

]
(3.39)

= 1

2m

[
p2

τ1
+

p2
τ2

cosh2 τ1
+

e4τ2

cosh2 τ1
p2

u +
p2

ϕ

sinh2 τ1
+

2e2τ2

cosh2 τ1
pϕpu

]
, (3.40)
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and we obtain for the metric terms

(gab) =


1 0 0 0
0 1

cosh2 τ1
0 0

0 0 e4τ2

cosh2 τ1

e2τ2

cosh2 τ1

0 0 e2τ2

cosh2 τ1

1
sinh2 τ1

 , (3.41)

det(gab) = e−4ρ sinh2 τ1 cosh6 τ1. (3.42)

The quantum potential according to our ordering prescription is found to read


V (τ1) = 2h̄2

m
− h̄2

8m

(
1

sinh2 τ1
− 1

cosh2 τ1

)
. (3.43)

We can therefore write the path integral, again we separate off the ignorable coordinates (u, ϕ),
and we obtain

K(τ ′′
1 , τ ′

1, τ
′′
2 , τ ′

2, u
′′, u′, ϕ′′, ϕ′; T ) =

∫ τ1(t
′′)=τ ′′

1

τ1(t ′)=τ ′
1

Dτ1(t)

∫ τ2(t
′′)=τ ′′

2

τ2(t ′)=τ ′
2

Dτ2(t)

∫ u(t ′′)=u′′

u(t ′)=u′
Du(t)

×
∫ ϕ(t ′′)=ϕ′′

ϕ(t ′)=ϕ′
Dϕ(t) sinh τ1 cosh3 τ1 exp

[[
i

h̄

∫ T

0

(m

2

{
τ̇ 2

1

+ cosh2 τ1
[
τ̇ 2

2 + e−4τ2 cosh2 τ1u̇
2 + sinh2 ϕ̇2 − 2e−4τ2 sinh2 τ1u̇ϕ̇

]}
+

h̄2

8m

(
1

sinh2 τ1
− 1

cosh2 τ1
− 16

))
dt

]]
=

(
1

4
sinh 2τ ′′

1 sinh 2τ ′
1

)−1/2

eτ ′
2+τ ′′

2 e−2ih̄T /m

×
∑
kϕ∈Z

eikϕ(ϕ′′−ϕ′)

2π

∫
dku

eiku(u
′′−u′)

2π
Kkukϕ

(τ ′′
1 , τ ′

1, τ
′′
2 , τ ′

2; T ) (3.44)

with the path integral Kkukϕ
(T ) given by

Kkukϕ
(τ ′′

1 , τ ′
1, τ

′′
2 , τ ′

2; T ) = (cosh τ ′′
1 cosh τ ′

1)
−1/2

∫ τ1(t
′′)=τ ′′

1

τ1(t ′)=τ ′
1

Dτ1(t)

×
∫ τ2(t

′′)=τ ′′
2

τ2(t ′)=τ ′
2

Dτ2(t) cosh τ1 exp

(
i

h̄

∫ T

0

{
m

2

(
τ̇ 2

1 + cosh2 τ1τ̇
2
2

)
− h̄2

2m

[
k2
u

cosh2 τ1

(
e4ρ + 2

kϕ

|ku| e2ρ +
1

4

)
+

k2
ϕ − 1

4

sinh2 τ1

)]}
dt

)
. (3.45)

This is a path integral which is related to the Morse potential, respectively to the oscillator-like
potential on the hyperbolic plane [10, 21] (and references therein), where with respect to the
variable τ2 discrete and continuous states are allowed. We have

Kkukϕ
(τ ′′

1 , τ ′
1, τ

′′
2 , τ ′

2; T ) =
∫

dkτ2�
(MP)
pτ2

(τ ′′
2 )�(MP)∗

pτ2
(τ ′

2)

×
∫ τ1(t

′′)=τ ′′
1

τ1(t ′)=τ ′
1

Dτ1(t) exp

{
i

h̄

∫ T

0

[
m

2
τ̇ 2

1 − h̄2

2m

(
k2
ϕ − 1

4

sinh2 τ1
− −k2

τ2
− 1

4

cosh2 τ1

)]
dt

}
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+
∑
nτ2

�(MP)
nτ2

(τ ′′
2 )�(MP)

nτ2
(τ ′

2)

∫ τ1(t
′′)=τ ′′

1

τ1(t ′)=τ ′
1

Dτ1(t)

× exp

{
i

h̄

∫ T

0

[
m

2
τ̇ 2

1 − h̄2

2m

(
k2
ϕ − 1

4

sinh2 τ1
+

n2
τ2

− 1
4

cosh2 τ1

)]
dt

}
. (3.46)

The Morse potential wavefunctions have the form (kϕ,ku
= kϕ)sign(ku), nτ2 = kϕ,ku

−
2n − 1), n <

[
1
2 (kϕ,ku

− 2n − 1)
])

�(MP)
nτ2

(τ2) =
√

2n!
(
kϕ,ku

− 2nτ2 − 1
)

�
(
kϕ,ku

− n
) (|ku| e2τ2)kϕ,ku−n e− 1

2 |ku| e2τ2
L

(kϕ,ku−2n−1)
n (|ku| e2τ2).

(3.47)

�
(MP)
kτ2

(τ2) =
√

kτ2 sinh πkτ2

2π2|ku| �

[
1

2

(
1 + ikτ2 + kϕ,ku

)]
Wkϕ,ku /2,kτ2 /2(|ku| e2τ2). (3.48)

The bound states can only exist for kϕ,ku
> 0. Since max

(
nτ2

)
� |kϕ|/2 (cf the discussion

following (3.15)), only continuous states are allowed with respect to the variable τ1. Therefore
we finally get, where Ep is the same as in the previous equidistant systems:

K(τ ′′
1 , τ ′

1, τ
′′
2 , τ ′

2, u
′′, u′, ϕ′′, ϕ′; T ) = (sinh τ ′

1 cosh τ ′
1 sinh τ ′′

1 cosh τ ′′
1 )−1/2 e(τ ′

2+τ ′′
2 )/2

×
∑
kϕ∈Z

∫
dku

ei[kϕ(ϕ′′−ϕ′)+ku(u
′′−u′)]

(2π)2

∫ ∞

0
dp e−iEpT/h̄

×
{∑

nτ2

∫ ∞

0
dp �nτ2

(τ ′′
2 )(MP)�(MP)

nτ2
(τ ′

2)�
(nτ2 ,kϕ)∗
p (τ ′′

1 )�
(nτ2 ,kϕ)
p (τ ′

1)

+
∫ ∞

0
dkτ2

∫ ∞

0
dp �

(MP)∗
kτ2

(τ ′′
2 )�

(MP)
kτ2

(τ ′
2)�

(ikτ2 ,kϕ)∗
p (τ ′′

1 )�
(ikτ2 ,kϕ)
p (τ ′

1)

}
. (3.49)

This concludes the discussion of the three equidistant systems.

4. The horicyclic coordinate systems

4.1. Horicyclic-I coordinates

The first set of horicyclic coordinates is given by

z1 = −1 + e2q + r2 + 2iu
1 + e2q + r2 + 2iu

z2 = r
1 + e2q + r2 + 2iu

eiϕ

 (q ∈ R, r > 0, u ∈ R, ϕ ∈ [0, 2π)). (4.1)

This gives for the Hamiltonian

H = 1

2m

{
p2

q + e2q

[
p2

r +
(pϕ

r
+ rpu

)2
]

+ e4qp2
u

}
(4.2)

= 1

2m

[
p2

q + e2qp2
r + e2q(e2q + r2)p2

u +
e2q

r2
p2

ϕ + 2 e2qpϕpu

]
, (4.3)
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and we obtain for the metric terms

(gab) =


1 0 0 0
0 e2q 0 0
0 0 e2q(e2q + r2) e2q

0 0 e2q e2q/r2

 , (4.4)

det(gab) = r2 e−8q . (4.5)

Therefore we obtain for the path integral and Gaussian path integration in (u, ϕ)

K(q ′′, q ′, r ′′, r ′, u′′, u′, ϕ′′, ϕ′; T ) = e−2ih̄T /m

∫ q(t ′′)=q ′′

q(t ′)=q ′
Dq(t)

∫ r(t ′′)=r ′′

r(t ′)=r ′
Dr(t)

×
∫ u(t ′′)=u′′

u(t ′)=u′
Du(t)

∫ ϕ(t ′′)=ϕ′′

ϕ(t ′)=ϕ′
Dϕ(t)r e−4q exp

(
i

h̄

∫ T

0

{
m

2

[
q̇2 +

ṙ2

e2q

− e−4q(u̇2 + (e2q + r2)ϕ̇2 − 2r2u̇ϕ̇)

]
+ e2q h̄2

2mr2

}
dt

)
= eq ′+q ′′

e−2ih̄T /m

∫ ∞

0
dku

eiku(u
′′−u′)

2π

∑
kϕ∈Z

eikϕ(ϕ′′−ϕ′)

2π
Kkukϕ

(q ′′, q ′, r ′′, r ′; T ), (4.6)

with the remaining path integral Kkukϕ
(T ) given by

Kkukϕ
(q ′′, q ′, r ′′, r ′; T ) = (r ′r ′′)−1/2 e(q ′+q ′′)/2 eih̄T /8m

∫ y(t ′′)=y ′′

y(t ′)=y ′

Dy(t)

y2

×
∫ x(t ′′)=x ′′

x(t ′)=x ′
Dx(t) exp

{
i

h̄

∫ T

0

[
m

2

(
ṙ2 + ẏ2

y2

)

− y2 h̄2

2m

(
k2
ϕ − 1

4

r2
+ r2k2

u + 2kukϕ

)
− y4 h̄2k2

u

2m

]
dt

}
(4.7)

= |ku| eih̄T /8m

∞∑
n=0

2n!

� (n + |ku| + 1)
(|ku|r ′r ′′)|ku| e− 1

2 |ku|(r ′2+r ′′2)

×L(|ku|)
n (|ku|r ′)L(|ku|)

n (|ku|r ′)
∫ y(t ′′)=y ′′

y(t ′)=y ′

Dy(t)

y

× exp

{
i

h̄

∫ T

0

[
m

2

ẏ2

y2
− h̄2y2

2m

(|ku|(4n + 2|kϕ| + 2) + 2kukϕ + k2
uy

2
)]

dt

}
.

(4.8)

I have used the path integral solution of the radial harmonic oscillator [21, 41] (L(ku)
n (z) denote

Laguerre polynomials), and we have also performed the transformation q = ln y according to
[21]. In particular, the path integral (4.7) is of the form called ‘oscillator-like’ potential on the
hyperbolic plane. The ‘oscillator-like’ term reads k2

uy
2. The potential in r has the form

h̄2

2m

(
k2
ϕ − 1

4

r2
+ r2k2

u + 2kukϕ

)
.

Due to the spectrum of the radial harmonic oscillator we see that |ku|(4n + 2|kϕ| + 2) +
2kukϕ � 0 and therefore only continuous states are allowed in (4.7) which is, of course,



3640 C Grosche

related to the Morse potential. Using the result of [21], we finally obtain the solution of the
horicyclic-I coordinates on HH(2) as follows:

K(q ′′, q ′, r ′′, r ′, u′′, u′, ϕ′′, ϕ′; T ) =
∫ ∞

0
dku

∑
kϕ∈Z

∞∑
n=0

×
∫ ∞

0
dp eiEpT/h̄�p,n,ku,kϕ

(q ′′, r ′′, u′′, ϕ′′)�∗
p,n,ku,kϕ

(q ′, r ′, u′, ϕ′), (4.9)

Ep = h̄2

2m
(p2 + 4) (4.10)

with the wavefunctions given by (we abbreviate En = 2n + |kϕ| + sign(ku)kϕ + 1)

�p,n,ku,kϕ
(y, r, u, ϕ) = ei(kuu+kϕϕ)

2π

√
2n!

� (n + |ku| + 1)
(|ku|r)|ku| e− 1

2 |ku|r2
L(|ku|)

n (|ku|r)

×
√

p sinh πp

2π2
�

(
1

2
(1 + ip + En)

)
W−En/2,ip/2(|ku| e2q). (4.11)

4.2. Horicyclic-II coordinates

The second set of horicyclic coordinates is given by

z1 = 2(u + xz) − i(e2q + x2 + z2 − 1)

2(u + xz) − i(e2q + x2 + z2 + 1)

z2 = −2(z + ix)

2(u + xz) − i(e2q + x2 + z2 + 1)

 (q, u, x, z ∈ R). (4.12)

This gives in the usual way for the Hamiltonian and for the metric terms

H = 1

2m

{
p2

q + e2q
[
p2

x +
(
pz − 2xpu

)2]
+ e4qp2

u

}
(4.13)

= 1

2m

[
p2

q + e2q
(
p2

x + p2
z + (4x2 + e2q)p2

u − 4xpzpu

)]
(4.14)

(gab) =


1 0 0 0
0 e2q 0 0
0 0 e2q −2x e2q

0 0 −2x e2q 4x2 e2q + e4q

 , (4.15)

det(gab) = e−8q . (4.16)

We can write the path integral and separate off the u and z path integration by means of
Gaussian integrations yielding

K(q ′′, q ′, x ′′, x ′, u′′, u′, z′′, z′; T )

= e−2ih̄T /m

∫ q(t ′′)=q ′′

q(t ′)=q ′
Dq(t)

∫ x(t ′′)=x ′′

x(t ′)=x ′
Dx(t)

∫ u(t ′′)=u′′

u(t ′)=u′
Du(t)

∫ z(t ′′)=z′′

z(t ′)=z′
Dz(t) e−4q

× exp

{
i

h̄

∫ T

0

[
m

2

(
q̇2 +

ẋ2

e2q

)
+ e−4q((4x2 + e2q)ż2 + u̇2 + 4xu̇ż)

]
dt

}
= e−2ih̄T /m eq ′+q ′′

∫
dku

∫
dkz

eiku(u
′′−u′)+ikz(z

′′−z′)

(4π)2
Kkukz

(q ′′, q ′, x ′′, x ′; T ) (4.17)
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with the remaining path integral Kkukz
(T )

Kkukz
(q ′′, q ′, x ′′, x ′; T ) = e−(q ′+q ′′)/2

∫ q(t ′′)=q ′′

q(t ′)=q ′
Dq(t)

∫ x(t ′′)=x ′′

x(t ′)=x ′
Dx(t) e−q

× exp

{
i

h̄

∫ T

0

[
m

2

(
q̇2 +

ẋ2

e2q

)
− h̄2k2

u

2m
e2q

(
e2q + 4

(
x − kz

2ku

)2
)]

dt

}

=
∞∑

n=0

�(HO)
n (x ′)�(HO)

n (x ′′)
∫ q(t ′′)=q ′′

q(t ′)=q ′
Dq(t)

× exp

{
i

h̄

∫ T

0

[
m

2

[
q̇2 − h̄2

2m
e2q

(
k2
u e2q + 4|ku|

(
n + 1

2

))]
dt

}
. (4.18)

The �n(x) are the wavefunctions of the harmonic oscillator with frequency ω = 2h̄|ku|/m

shifted by −kz/2ku and are given by

�(HO)
n (x) =

4
√

2|ku|/π√
2nn!

e−|ku|x2
Hn

[
2|ku|

(
x − kz

2|ku|
)]

. (4.19)

Therefore we obtain for the complete solution in horicyclic-II coordinates

K(q ′′, q ′, x ′′, x ′, u′′, u′, z′′, z′; T ) =
∫ ∞

0
dku

∫ ∞

0
dku

∞∑
n=0

×
∫ ∞

0
dp e−iEpT/h̄�p,n,ku,kϕ

(q ′′, x ′′, u′′, z′′)�∗
p,n,ku,kϕ

(q ′, x ′, u′, z′), (4.20)

�q,n,ku,kz
(y, x, u, z) = ei(kuu+kzz)

2π
�(HO)

n (x)

×
√

p sinh πp

4π2|ku| �

[
1

2

(
1 + ip + n +

1

2

)]
W−(n+ 1

2 )/2,ip/2(2|ku| e2q), (4.21)

Ep = h̄2

2m
(p2 + 4). (4.22)

This concludes the discussion.

5. The remaining coordinate systems

In this section, we enumerate the remaining six coordinates on HH(2) for completeness.
Three of them are parametric coordinate systems. i.e. an additional parameter, say a, is
given, which for instance describes the interfocal distance of an ellipse. We do not formulate
the path integral, because these coordinate systems are quite involved. The knowledge of
the corresponding special functions which are solutions of the Helmholtz, respectively the
Schrödinger equation, is very limited.

There are also parabolic coordinates, where we formulate the path integral for the
semicircular–parabolic system; however, as for the parametric systems, the corresponding
path integral cannot be solved.
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5.1. The parametric coordinate systems

We briefly sketch the three parametric coordinate systems.

1. Elliptic-I coordinates. We have the following representation:

z2
1 = a(ν − 1)(� − 1)

(a − 1)ν�
e2iϕ1 , z2

2 = (ν − a)(a − �)

(a − 1)ν�
e2iϕ2 , (5.1)

with 1 � � � a � ν < ∞, a > 1.
2. Elliptic-II coordinates. They are given by

z2
1 = − (a − 1)ν�

a(ν − 1)(1 − �)
e2iϕ1 , z2

2 = (ν − a)(a − �)

a(ν − 1)(1 − �)
e2iϕ2 , (5.2)

with 1 < a � ν, � � 0 and 0 < a − 1 � 1.
3. Semi-hyperbolic coordinates. They are given by

z1 = is1 cosh u − s0 sinh u
is0 cosh u + s1 sinh u

z2 = is2 eiϕ

is0 cosh u + s1 sinh u

 (u ∈ R, ϕ ∈ [0, 2π)). (5.3)

s0, s1, s2 are defined by
1

2
(s0 + is1)

2 = (ν − a)(� − a)

a(a − a∗)
, s2

2 = − ν�

|a|2 , (5.4)

with ν < 0 < �, a = α + iβ (α, β ∈ R).

We do not go into the details of these coordinate systems. Let us only mention that for
the corresponding coordinate systems on the two-dimensional hyperboloid, from where the
systems on HH(2) have their notion, the corresponding solutions of the Schrödinger equation
are known as Lamé–Wagnerian functions, see [15, 28] for details.

5.2. The elliptic- and hyperbolic-parabolic coordinate systems

For the last three coordinate systems, we use a notation which differs from [2] and is more in
accordance with our publications [15, 18, 19]. First we define the elliptic–parabolic coordinate
system

z1 = ν + � − 2ν� + 2iν�u
ν + � + 2iν�u

z2 = 2eiϕ
√

ν�(1 − ν)(� − 1)
ν + � + 2iν�u

 (0 < ν < 1 < �, u ∈ R, ϕ ∈ [0, 2π)). (5.5)

The hyperbolic–parabolic coordinate system is given by

z1 = ν + � + 2iν�u
ν + � − 2ν� − 2iν�u

z2 = 2i eiϕ
√

ν�(1 − ν)(� − 1)
ν + � − 2ν� − 2iν�u

 (0 < ν < 1 < �, u ∈ R, ϕ ∈ [0, 2π)). (5.6)

We introduce for the elliptic–parabolic coordinate system [15, 18, 19], the new
parametrization ν = 1/cosh2 ω (ω ∈ R), and � = 1/ cos2 ϑ ,

(−π
2 < ϑ < π

2

)
. In these

coordinates we obtain for the Hamiltonian

H = 1

2m

cos2 ϑ cosh2 ω

cosh2 ω − cos2 ϑ

[
p2

ω + p2
ϑ + (coth2 ω + cot2 ϑ)p2

α

+ (cosh2 ω sinh2 ω + sin2 ϑ cos2 ϑ)p2
u + 2(cosh2 ω − cos2 ϑ)pupα

]
. (5.7)

The mixture of 1/cosh2ω, cosh2 ω and cosh4 ω makes it impossible to evaluate the path integral
representation. The case for the hyperbolic–parabolic is similar and left to the reader.
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5.3. The semicircular-parabolic coordinate system

The semicircular–parabolic coordinate system is given by

z1 = 2�2ν2u1 − 2�ν(� + ν)u2 − i
[
(� − ν)2 + ν2�2

(
u2

2 − 1
)]

2�2ν2u1 − 2�ν(� + ν)u2 − i
[
(� − ν)2 + ν2�2

(
u2

2 + 1
)]

z2 = 2�νu2 − 2i(� + ν)

2�2ν2u1 − 2�ν(� + ν)u2 − i
[
(� − ν)2 + ν2�2

(
u2

2 + 1
)]

 (ν < 0 < �, u1, u2 ∈ R).

(5.8)

Redefining � = 2/ξ 2 (ξ > 0) and ν2 = −2/η2 (η > 0) we find

H = 1

2m

ξ 2η2

ξ 2 + η2

[
p2

ξ + p2
η + (ξ 6 + η6)p2

u1
+ (ξ 2 + η2)p2

u2
+ 2(ξ 4 − η4)pu1pu2

]
. (5.9)

Although symmetric in ξ and η, the involvement of quartic and sextic terms makes any further
evaluation impossible. There exist some attempts in the literature to treat such potential
systems, and these studies go with the name ‘quasi-exactly solvable potentials’ [44]. In fact,
sextic oscillators with a centrifugal barrier and quartic hyperbolic and trigonometric can be
considered, and they are very similar in their structure as for instance in (5.9). One can find
particular solutions, provided the parameters in the quasi-exactly solvable potentials fulfil
special conditions. Furthermore, well-defined expressions for the wavefunctions and for the
energy-spectrum can indeed be found if only quadratic, sextic and a particular centrifugal term
are present. The wavefunctions then have the form of �(x) ∝ P(x4)×e−αx4

, with a polynomial
P. However, quasi-exactly solvable potentials have the feature that only a finite number of
bound states can be calculated (usually the ground state and some excited states). Another
important observation is due to Létourneau and Vinet [35]: they found quasi-exactly solvable
potentials that emerge from dimensional reduction from two- and three-dimensional complex
homogeneous spaces. The sextic potential in the Hamiltonian (5.9) is of that type. If we make a
coordinate transformation from the ‘parabolic’ coordinates (ξ, η) to the ‘Cartesian’ coordinates
(x, y) by means of x = 1

2 (ξ 2 − η2), y = ξη (5.9) is transformed into the Hamiltonian (4.14)
with y = e�, and nothing new can be obtained. Actually, the potential in (4.14) is called
‘Holt potential’ in R

2, where it is maximally superintegrable, whereas its analogue in R
3 is

minimally superintegrable [17]. Furthermore, analogues on the two-dimensional [18] and
on the three-dimensional hyperboloid [19] exist which are separable in horicyclic and semi-
circular parabolic coordinates, respectively; however only in horicyclic coordinates an analytic
solution can be found. Therefore, we are not able to treat systems with the structure of (5.9)
any further.

6. Superintegrable potentials on the two-dimensional hyperboloid

As has been pointed out by Kalnins, Miller, Hakobyan and Pogosyan [30], the investigation
of the quantum motion on HH(2) leads to two potentials which are superintegrable on the
two-dimensional hyperboloid. These two potentials are

V1 = h̄2

2m

(
α2 − 1

4

u2
2

− γ 2

(u0 − u1)2
+ β2 u0 + u1

(u0 − u1)3

) 
equidistant

elliptic–parabolic
hyperbolic–parabolic

horicyclic

 , (6.1)

V2 = h̄2

2m

(
α2 − 1

4

u2
2

+ γ 2 u0u1(
u2

0 + u2
1

)2 + (α2 − β2)
u2

0 − u2
1(

u2
0 + u2

1

)2

) {
equidistant

semi-hyperbolic

}
.

(6.2)
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The two-dimensional hyperboloid is characterized by u2
0 − u2

1 − u2
2 = 1 with u0 > 0. In

(6.1) and (6.2) we have listed on the right-hand side the coordinate systems which allowed
separation of variables in the Schrödinger equation and the path integral. The underlined
coordinate systems allow a complete path integral treatment of the potential in question.
In elliptic–parabolic, hyperbolic–parabolic and semi-hyperbolic coordinates no explicit path
integral solution is possible. In [30], explicit solutions for the two potentials in all the separable
coordinate systems were given in terms of power expansions (polynomials) in the respective
coordinates, including interbasis expansions which relate one solution to another. However,
only the bound state solutions were given. The equidistant coordinate system is given by

u0 = cosh τ1 cosh τ2, u1 = cosh τ1 sinh τ2, u2 = sinh τ1, (τ1, τ2 ∈ R),

(6.3)

and the horicyclic system has the form

u0 = y2 + x2 + 1

2y
, u1 = y2 + x2 − 1

2y
, u2 = x

y
, (y > 0, x ∈ R). (6.4)

We consider the potential V1 in equidistant and horicyclic and the potential V2 in
equidistant coordinates.

Equidistant coordinates:

V1 = h̄2

2m

[
α2 − 1

4

sinh2 τ1
+

1

cosh2 τ1
(β2 e4τ2 − γ 2 e2τ2)

]
, (6.5)

Horicyclic coordinates:

= h̄2

2m
y2

(
α2 − 1

4

x2
− γ 2 + β2x2 + β2y2

)
, (6.6)

Equidistant coordinates:

V2 = h̄2

2m

[
α2 − 1

4

sinh2 τ1
+

1

cosh2 τ1

(
α2 − β2

cosh2 2τ2
− γ

2

sinh 2τ2

cosh2 2τ2

)]
. (6.7)

With our results from sections 3 and 4, we can evaluate the corresponding path integrals. We
see that the path integral for the potential V1 in equidistant coordinates corresponds to the
path integral (3.45), the path integral for the potential V1 in horicyclic coordinates to the path
integral (4.7) and the path integral for V2 in equidistant coordinates to the path integral (3.27)1.
The principal difference between the set of the potentials V1 and V2 and the path integrals
(3.45, 4.7, 3.27) is that we can choose freely the constants in the potentials, whereas in the path
integrals (3.45, 4.7, 3.27) the couplings in the potentials are fixed and related to each other.
This interrelation of the constants in the path integrals (3.45, 4.7, 3.27) has on one hand the
consequence that the principal spectrum on HH(2) is always continuous with form (2.22). This
freedom of the choice of the couplings α, β, γ and in particular γ (it lowers the potential trough
due to its sign), has on the other hand the consequence that for the principal quantum number
corresponding to, say, τ1 or y, also a finite number of discrete states are allowed with the
maximal number in V1 given by Nmax <

[
1
2 (γ 2/2β − α − 1)

]
. Therefore, in order to perform

a path integral evaluation for V1 and V2 we have to take the path integrals (3.45, 4.7, 3.27)
and replace the couplings accordingly. The scattering states for V1 and V2 follow immediately

1 Actually, the path integral formulations for the potentials V1 and V2 in the other coordinate systems elliptic-
and hyperbolic–parabolic, and semi-hyperbolic coordinates correspond to the path integral formulations to the
corresponding coordinate systems on HH(2) which we do not state explicitly.
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Table 1. Solutions of the path integration in Hermitian space HH(2).

Coordinate system Solution in terms of the wavefunctions Potentials

Spherical Product of Legendre functions Pöschl–Teller and
modified Pöschl–Teller

Equidistant-I Product of Legendre functions Modified Pöschl–Teller

Equidistant-II Product of Legendre functions Hyperbolic barrier and
modified Pöschl–Teller

Equidistant-III W-Whittaker function times Morse potential and
Legendre function modified Pöschl–Teller

Horicyclic-I Laguerre polynomial times Radial harmonic oscillator
W-Whittaker function and Morse potential

Horicyclic-II Hermite polynomial times Harmonic oscillator
W-Whittaker function and Morse potential

from our solutions. The discrete solutions can be obtained from the discrete spectrum of
the modified Pöschl–Teller potential and the Morse potential, respectively, by inserting the
couplings accordingly. In fact, only the bound state solutions of the sub-path integration give
bound state solutions corresponding to the principal quantum number corresponding to, say,
τ1 or y. Because these bound state solutions have been presented in [30] in great detail, this
will not be repeated here.

7. Discussion and conclusion

In this paper, we have successfully evaluated the path integral on the Hermitian space HH(2)
by six coordinate variables out of twelve which separate the Schrödinger equation and the
path integral formulation. In each case we could separate off the ignorable coordinates by a
two-dimensional Gaussian path integration. The remaining problems had the structure of a
path integral on the two-dimensional hyperboloid equipped with a potential. There occurred
(modified) Pöschl–Teller potentials, a barrier potential, the Morse potential and the (radial)
harmonic oscillator. In some cases a part of the solutions contained in a sub-path integration
(sub-group decomposition) a discrete and a continuous spectrum. However, the principal
spectrum is always continuous and has the form

Ep = h̄2

2m
(p2 + 4). (7.1)

The zero-energy E0 = 2h̄2/m is a well-known feature of the quantum motion on a space of
constant negative curvature.

We summarize the results in table 1. We have omitted the ignorable coordinates because
they just give exponentials, and the term ‘Legendre functions’ is used synonymously with
‘hypergeometric functions’. In the three parametric (two elliptic and the semi-hyperbolic)
and in the three parabolic coordinate systems, no solution could be found. In the case of the
elliptic systems this is due to our ignorance of a theory of special functions in terms of such
coordinates, and in the case of the three parabolic coordinates solutions could not be found
due to the high anharmonicity of the emerging potential problems.

We have observed that a free motion in some space (here with non-constant curvature,
though constant sectional curvature) leads to potential coupling after integrating out
the ignorable coordinates, i.e. to interaction. This feature has been pointed out in [2]. Due to
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the structure of F(x, y) we also see that the metric is (−, +, . . . , +), i.e. it is of the Minkowski-
type, and hence the Hamiltonian system under consideration is integrable and relativistic
with non-trivial interaction. Choosing different coordinate systems yields different potential
interactions which are, however, all equivalent in the sense of quantum motion in HH(2). Some
were also identical and yield superintegrable potentials on the two-dimensional hyperboloid.
The emergence of interaction after separating off ignorable coordinates of the free motion
in a homogeneous space, is of course not restricted to the space HH(2). In fact, also the
path integral formulations of the Pöschl–Teller potential are due to path integration on the
homogeneous space corresponding to SU(2) [1, 6, 33] and the path integral formulations
of the modified Pöschl–Teller potential is due to path integration on the homogeneous space
corresponding to SU(1, 1) [1, 8, 33]. The same is true for the radial harmonic oscillator,
and an analogous consideration was done in [15, 16, 21] for a path integral identity involving
spheroidal coordinates. The latter are in fact examples of the quantum motion in three-
dimensional flat space R

3 and on the three-dimensional sphere.
We have therefore also shown that the path integral solutions on HH(2) give path integral

identities for potential problems, a property which is valid for every solution after performing
the Gaussian path integration of the ignorable coordinates. In particular, it turns out that two
such potentials, denoted by V1 and V2, are superintegrable potentials on the two-dimensional
hyperboloid. The evaluation of the bound state solutions has been achieved for V1 and V2 in
[30], whereas our contribution also yields the scattering states.

The Hermitian hyperbolic space is closely related to the case of the quantum motion
in hyperbolic spaces of rank 1. A path integral discussion was performed in [11], however
restricted to a particular coordinate system only. In the space SU(n, 1)/S[U(1) × U(n)] we
have for the metric

ds2 = dy2

y2
+

1

y2

n∑
k=2

dzk dz∗
k +

1

y4

(
dx1 + 	

n∑
k=2

z∗
k dzk

)2

, (7.2)

(zk = xk + iyk ∈ C(k = 2, . . . , n), x1 ∈ R, y > 0), with the hyperbolic distance given by

cosh d(q′′, q′) = ((x′′ − x′)2 + y ′2 + y ′′2)2 + 4(x ′′
1 − x ′

1 + (x′′y′ − y′′x′))2

4(y ′y ′′)4 . (7.3)

If we additionally introduce a set of polar coordinates, this space is an n-dimensional
generalization of HH(2) in terms of horicyclic-I coordinates zk = rk eiϕk , (rk > 0, 0 �
ϕk � 2π, k = 2, . . . , n). If we set n = 2, we recover the present case of HH(2). It is
obvious that the higher the dimension the more separable coordinate systems can be found.
As mentioned in [2] the case of HH(2) is rather special because all separable coordinate
systems have exactly two ignorable and two non-ignorable coordinates. This is due to the
fact that SU(2, 1) has four mutually non-conjugate maximal Abelian subgroups which are
all two dimensional. In [4], separable coordinate systems on general Hermitian hyperbolic
spaces were considered with the number of ignorable coordinates equals to n = p + q − 1.
For the higher-dimensional case, we have thus a Hermitian hyperbolic space HH(3) with
three ignorable coordinates and three non-ignorable coordinates, the coordinates on the three-
dimensional hyperboloid. In the latter there are 34 of such systems which separate the
Helmholtz, respectively the Schrödinger equation, and the path integral. Following [30] we
can identify superintegrable potentials on the three-dimensional hyperboloid.

One could also find a similar line of reasoning in [4] where the case of motion on
the corresponding SU(2, 2)-hyperboloid was worked out. Here, the corresponding reduced
space of the non-ignorable coordinates is the O(2, 2)-hyperboloid, where 75 coordinate
systems could be identified [29], and 11 different types of superintegrable potentials. These
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potentials were stated, but exact solutions of the corresponding Schrödinger equation were not
worked out.

It would be also desirable to obtain a closed expression of the Green’s function
G(cosh d;E) on HH(2) (respectively on HH(n)) in terms of cosh d. Studies along these
lines will be subject to future investigations.
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Appendix. Formulation of the path integral in curved spaces

In order to set up our notation for path integrals on curved manifolds, I proceed in a canonical
way. To avoid unnecessary overlap with our table of path integrals [21], I give in the following
only the essential information required for the path integral representation on curved spaces.
For more details concerning ordering prescriptions, transformation techniques, perturbation
expansions, point interactions and boundary conditions I refer to [21], where also listings
of the application of basic path integrals will be presented. In the following q denote some
D-dimensional coordinates. I start by considering the classical Lagrangian corresponding to
the line element ds2 = gab dqa dqb of the classical motion in some D-dimensional Riemannian
space

LCl(q, q̇) = m

2

(
ds

dt

)2

− V (q) = m

2
gab(q)q̇aq̇b − V (q). (A.1)

The quantum Hamiltonian is constructed by means of the Laplace–Beltrami operator

H = − h̄2

2m

LB + V (q) = − h̄2

2m

1√
g

∂

∂qa
gab√g

∂

∂qb
+ V (q) (A.2)

as a definition of the quantum theory on a curved space. Here are g = det(gab) and
(gab) = (gab)

−1. The scalar product for wavefunctions on the manifold reads (f, g) =∫
dq

√
gf ∗(q)g(q), and the momentum operators which are Hermitian with respect to this

scalar product are given by

pa = h̄

i

(
∂

∂qa
+

�a

2

)
, �a = ∂ ln

√
g

∂qa
. (A.3)

In terms of the momentum operators (A.3), we can rewrite H
¯

by using a product according to
gab = hachcb [21]. Then we obtain for the Hamiltonian (A.2) (PF–Product-Form)

H
¯

= − h̄2

2m

LB + V (q) = 1

2m
hacpapbh

cb + 
VPF (q) + V (q), (A.4)
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and for the path integral

K(q′′, q′; T ) =
∫ q(t ′′)=q′′

q(t ′)=q′
DPF q(t)

√
g(q)

× exp

{
i

h̄

∫ t ′′

t ′

[
m

2
hac(q)hcb(q)q̇aq̇b − V (q) − 
VPF (q)

]
dt

}

= lim
N→∞

( m

2π iεh̄

)ND/2 N−1∏
k=1

∫
dqk

√
g(qk)

× exp

 i

h̄

N∑
j=1

[
m

2ε
hbc(qj )hac(qj−1)
qa

j 
qb
j − εV (qj ) − ε
VPF (qj )

] .

(A.5)


VPF denotes the well-defined quantum potential


VPF(q) = h̄2

8m
[gab�a�b + 2(gab�b),b + gab

,ab] +
h̄2

8m
(2hachbc

,ab − hac
,ah

bc
,b − hac

,bh
bc

,a)

(A.6)

arising from the specific lattice formulation (A.5) of the path integral or the ordering
prescription for position and momentum operators in the quantum Hamiltonian, respectively.
Here we have used the abbreviations ε = (t ′′ − t ′)/N ≡ T/N,
qj = qj − qj−1, qj =
q(t ′ + jε) (tj = t ′ + εj, j = 0, . . . , N) and we interpret the limit N → ∞ as equivalent to
ε → 0, T fixed. The lattice representation can be obtained by exploiting the composition law
of the time-evolution operator U = exp(−iHT/h̄), respectively its semi-group property.
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(in German)
[37] Moon F and Spencer D 1961 Field Theory Handbook (Berlin: Springer)
[38] Morse P M and Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill)
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